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Abstract
Recent simulation and experimental results on molecular alignment at the
liquid–vapour interface of dipolar fluids are in disagreement with the predictions
of all existing theories. We discuss these problems in the context of our earlier
work on association in dipolar fluids and propose new theoretical approaches
to tackle them.

1. Introduction

There seems to exist a certain degree of cultural prejudice against surfaces, with things
superficial usually being deemed of lesser pith and moment [1]. This is most unjustified
as regards the liquid–vapour (LV) interface of a fluid, which is the seat of a host of fascinating
phenomena [2]. These are a consequence of the fact that a molecule residing in the interfacial
region finds itself in a very different environment to inside the bulk, on account of its reduced
number of neighbours. The stronger attraction towards the denser liquid phase results in the
existence of a surface tension, or excess free energy associated with the interface.

Of the plethora of fluids of Nature and industry, there are many where multipolar
interactions play an important role. Recall that multipole moments are the ingredients of
classical electromagnetism’s description of a discrete distribution of charges. If such a
distribution is spatially asymmetric, then the lowest non-zero moment of an overall neutral
body is the dipole moment; if it has a degree of axial symmetry, this is reflected in the
quadrupole moment. In what follows we restrict ourselves to permanent multipoles, i.e.,
those that are caused by the particular equilibrium geometry of a molecule. The interactions
between (even point) multipoles are highly anisotropic, as they couple the molecular axes with
the intermultipole vector. Two parallel dipoles will repel each other if placed side by side,
but attract each other if placed head to tail, whereas the minimum-energy configuration of two
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quadrupoles is T-shaped. In addition, dipolar forces are long ranged, which produces subtle
effects relating to system size and the nature of the boundary conditions [3].

At the LV interface, the anisotropy of the multipolar interactions, combined with the
strong density gradient, gives rise to preferential alignment of the molecular axes [4, 5]. The
width of the interface is of the order of the bulk correlation length ξ , which is microscopic far
from the LV critical point [6]. Any orientational order will therefore be confined within a few
molecular layers. (We shall not discuss here the surfaces and interfaces of bulk ordered fluids,
such as liquid crystals (LCs); for a review see [7].) One might then reasonably ask, what is
the relevance of molecular alignment that extends over such a short distance, and moreover
is in many cases weak (as will be seen below)? Consider the wall of a living cell: this is a
lipid bilayer, whose interior is highly hydrophobic. In order that hydrophilic species, such as
ions, may be exchanged between the cell and the outside world, channels must exist which are
protein molecules oriented such that they span the membrane. In a different context, catalysts
work in part by arranging individual molecules in such a way that their relevant groups are
exposed to attack by other reactants.

A number of theories have been developed for the density-orientation profile of fluids
with anisotropic interactions, including dipoles and quadrupoles. Gubbins and co-workers’
u-expansion [8], as well as Tarazona and co-workers’ perturbative expansions of the Helmholtz
free energy of a molecular fluid interface [9, 10], both failed to predict any interfacial
ordering arising from purely multipolar intermolecular potentials: the multipolar contribution
enters through its unweighted angular average, which vanishes in an unpolarized medium.
Later, Gubbins and co-workers used their f -expansion [11] and an Yvon–Born–Green-type
equation [12] to study the LV interface of a Stockmayer fluid [13]. They showed that dipoles
favour parallel orientations on the liquid side of the interface, and perpendicular on the vapour
side. This investigation was of paramount importance since it established that interfacial
ordering can be induced by multipolar forces alone.

The same qualitative picture as regards interfacial order has been corroborated by
all subsequent theoretical treatments. The present authors constructed a modified mean-
field (MMF) theory by approximating the radial distribution function (RDF) in the Helmholtz
free energy functional [14] by its low-density limit, rather than the long-distance limit
as is done in ordinary mean-field (MF) theory [15]. This established that the density-
functional (DF) formalism is able to predict the same surface-induced alignment as the
Gubbins et al integral equation. Teixeira and Telo da Gama’s MMF approach was refined by
Frodl and Dietrich [16, 17], who removed the additional approximation (of only quantitative
consequences) of retaining only terms to second order in the expansion of the RDF. They then
proceeded to a very detailed study of the bulk and interfacial properties of the Stockmayer fluid
which yielded scaling relations for the density and order parameter profiles, ρ(z) and α2(z)
respectively [17]:

ρ(z, τ → 0) = ρc + Aρτ
β Fρ(z/ξ), (1)

α2(z, τ → 0) = τβ+2ν Fα2(z/ξ), (2)

where τ = (Tc − T )/Tc is the reduced temperature, ξ is the bulk correlation length, β = 1
2

and ν = 1
2 are, respectively, the (MF) bulk order parameter and correlation length critical

exponents, Aρ is a non-universal amplitude, Fρ(y) is a universal scaling function, Fα2(y) is
a limiting function conjectured to be universal apart from a non-universal amplitude, and the
subscript c refers to quantities at the LV critical point. The order parameter α2(z) is defined as

α2(z) = 5

4π
〈P2(cos θ)〉, (3)
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where P2(x) = 1
2 (3 cos2 θ − 1) is the second Legendre polynomial and θ is the angle between

the dipole moment and the z-axis, assumed perpendicular to the (flat) LV interface. Sullivan
and co-workers derived more general versions of Teixeira and Telo da Gama’s MMF theory
by following the more conventional approach for generating corrections to MF theory [18]
and fixing its unrealistic low-temperature behaviour [19]. Furthermore, they included in
their model potential also dipole–quadrupole and quadrupole–quadrupole terms. Iatsevitch
and Forstmann [20] solved the Lovett–Mou–Buff–Wertheim [21, 22] equation for the density-
orientation profile of a Stockmayer fluid, using an interpolation of the direct correlation function
between those for the bulk phases calculated using the RHNC closure of the Ornstein–Zernike
equation [23]. Still, the basic qualitative conclusion remains unchanged: dipoles tend to lie
parallel to LV interface on its liquid side, and perpendicular on its vapour side.

A qualitative explanation can be given of the orienting tendency of dipoles at the LV
interface, in terms of the interaction between a real dipole and its image dipole. This was first
provided by Frodl and Dietrich [17], which we now reproduce. Consider two homogeneous
half-spaces, z > 0 and z < 0, each filled with dielectric media of permittivities ε+ and ε−,
respectively. Then the energy E required to place a dipole of strength m at a distance z > 0
from the (assumed sharp) interface at z = 0 making an angle θ with the normal is [24]

E = −m2

16

ε− − ε+

ε+(ε− + ε+)

1 + cos2 θ

z3
. (4)

At a fixed distance z, E attains its minimum value for θ = 0 or π if ε+ < ε− and for θ = π/2 if
ε+ > ε−. The preferred orientation of the dipole is therefore perpendicular to the interface if it
is located in the medium of smaller permittivity (i.e., lower density) or parallel to the interface
if it is instead in the medium with larger permittivity (i.e., higher density).

How well are these predictions verified? Gubbins and co-workers [25] performed a
Molecular Dynamics (MD) simulation of the Stockmayer fluid and indeed found parallel
alignment on the liquid side of the interface, in qualitative accord with theory, but simulation
data were inconclusive for the vapour side. The same fate befell another MD simulation of the
same system, by Nordholm and co-workers [26], as well as simulations of TIPT4 water (as
modelled by Sullivan et al [18, 19]), by Pohorille and co-workers [27–29], and by Matsumoto
and Kataoka [30, 31]: whereas dipoles in the liquid could be reliably said to prefer parallel
orientations, no such certainty was borne out as regards the vapour. Very recently, however,
Winkelmann and co-workers [32] carried out very careful MD simulations of a thin layer of:
(i) Stockmayer molecules; and (ii) dipolar Lennard-Jones (LJ) dumbbells of small elongation.
In both cases, molecular orientation was parallel to the interface, on the liquid as well as on
the vapour side, which is at variance with all theories. Thorough checks were conducted to
ensure that this was not a finite-size effect. It thus appears that the discrepancy is real, and
needs to be explained.

On the experimental front, studies are much less abundant. Early second-harmonic-
generation studies of the LV interfaces of water [33] and of aqueous solutions of phenol and
p-cresol [34–36] showed preferential alignment which could be due to dipolar interactions, but
this technique is only sensitive to a net polarization at the interface; moreover, interpretation
of its results carries some ambiguity. More recently, Law and co-workers [37] reported
evidence for spatial variation of orientational order at the critical liquid–liquid interface of
the ionic mixture triethyl-n-hexylammonium + triethyl-n-hexylboride (N2226 B2226) in the
solvent diphenyl ether, using Brewster angle ellipsometry. They also checked [38] that
the scaling function Fα2(z/ξ) in equation (2), now for the concentration profile v ≡ v(z)
of the polar component through the critical liquid–liquid interface of the mixtures carbon
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disulphide + cyclohexane and 2-nitroanisole + cyclohexane, has the form

α2(z) ∼ m∗4 d2v

dz2
, (5)

as follows from a suggestion by Sluckin [4, 39] and from Frodl and Dietrich’s work [17]. Here,
m∗ = m/

√
εσ 3 is the dipole strength reduced by the LJ well depth ε and the molecular hard-

sphere diameter σ . This is consistent with the MF result for a polymer–solvent interface [40]
that

S(z) ∼ d2v

dz2
− v

dv

dz
− 2

3

(
dv

dz

)2

(6)

where S(z) = 〈cos2 θn − 1
3 〉 is the order parameter for the nth monomer in a chain (taking into

account that the second derivative term dominates S(z)). For the critical concentration profile
v(z) − vc ∝ tanh(z/2ξ), both equations (5) and (6) give α2(z) of the shape predicted by the
theories of the LV interface reviewed above [38, figure 1].

Law and co-workers subsequently turned their attention to the (non-critical) LV interface
of the (critical) polar–non-polar mixtures 2-nitroanisole + cyclohexane and 4-
nitroanisole + cyclohexane [41] and were able to confirm the theoretical prediction of parallel
alignment of the dipoles on the liquid side of the interface; their experiments were not sensitive
to molecular behaviour on the vapour side. However, they also found that their results suggested

α2(z) ∼ v2, (7)

instead of equation (5). Alongside the failure of dipoles on the vapour side of the interface to
do what was expected of them [32], this is another mystery that requires clarification. In the
next section we propose a scheme for answering the first of these questions.

2. How to favour parallel alignment

At this stage we ask ourselves: how can we get the dipoles to lie parallel to the LV interface on
the vapour side so as to explain the results of Winkelmann et al? To answer this, let us see what
we can learn from other systems that also exhibit interfacial order. First and foremost amongst
these are LCs. The simplest mechanism that can induce long-range orientational order as is
obtained in the simplest LC phase, the nematic, is a highly anisotropic molecular shape. Then,
as theorized by Onsager [42], at sufficiently high densities the gain in translational entropy
associated with having the long axes of molecules all pointing in the same direction outweighs
the loss in rotational entropy thus incurred. Now, it is also known that a prolate (i.e., rod-
like) shape favours parallel alignment at both the N–V and I–V interfaces [7, and references
therein]. It would then appear that a mechanism that could promote dipole association on the
vapour side of the interface would also favour parallel alignment. And we might just have
one such mechanism at our disposal: as revealed by simulation [43–46] and later rationalized
by theory [47–49], dipoles at low densities tend to aggregate into chains—hence the extended
objects that we need to get the required ordering behaviour.

A clearer picture now begins to emerge: past theories of dipole-induced order at the LV
interface should be augmented with chain formation. Let us explore various ways in which
this can be achieved.

One possibility is to combine our theories for the LV interface [15] and for associating
dipoles at low densities [49]. It is, however, notoriously difficult to estimate reliably the
interactions between aggregates of different lengths [50], which are central to the correct
orientational behaviour. Moreover, in [49] it was assumed that the chains are long, whereas
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at the LV interface they are expected to be quite short due to the presence of attractive
interactions [50].

Alternatively, one could derive a statistical associating field theory (SAFT) along the lines
of [51], but now with angle-dependent pair potentials. The problem here is that SAFT is
formulated in terms of the monomer density only, which means that a given molecule will
interact in exactly the same way whether it is associated or not. Therefore no shape effect
results.

In view of the above difficulties, we have opted, in a first stage, to treat our system
as a mixture of dipolar monomers (species 1) and dimers (species 2). In other words, we
assume weak association, which we do not treat self-consistently: the degree of association
is an annealed variable. Monomers of course interact with one another via the full hard-
sphere + attractive 1/r6 tail + dipole–dipole potential:

φ11(r12, ω1, ω2) =




+∞ r � σ

−ε

(
σ

r12

)6

+ φdd(r12, ω1, ω2) r > σ ,
(8)

where r12 is the intermolecular vector, r12 = |r12|, ωi is the orientation of molecule i , and φdd

is the interaction between two dipoles of equal strength m given by

φdd(r12, ω1, ω2) = −m2

r3
12

[3(m̂1 · r̂12)(m̂2 · r̂12) − m̂1 · m̂2], (9)

where m̂i is a unit vector along dipole moment mi and r̂12 = r12/r12 is a unit vector along
the intermolecular axis.

On the other hand, it is assumed that the dipolar part of the interaction between two
monomers bonded in a dimer saturates: this is consistent with the approximations made
in [47, 49, 50]. Consequently, a dimer only interacts with monomers and with other dimers
via the spherically symmetric parts of the potentials due to its constituent monomers (i.e., a
site–site ‘LJ’ potential):

φ12(r12, ω1, ω2) =
2∑

α=1

φL J att(rα), (10)

φ22(r12, ω1, ω2) =
2∑

α,β=1

φL J att(rαβ), (11)

where the sums run over the LJ centres in each molecular species (1 in a monomer, 2 in a
dimer) and

φL J att(r12) =




+∞ r12 � σ

−ε

(
σ

r12

)6

r12 > σ .
(12)

φ12 and φ22 can be expanded in spherical harmonics for ease of computation [54]. According
to theory and simulation [52, 53], LJ dimers have opposite alignment behaviour to dipoles
at the LV interface: perpendicular on the liquid side, and parallel on the vapour side—as we
require.

If we now treat the interaction between monomers, φ11, in the MMF approximation [15],
and all others in the MF approximation, the grand potential functional will read [14, 55]
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[{ρi(r, ω)}] =
∫

dr dω fhs+hd({ρi (r, ω)}) −
2∑

i=1

∫
dr µiρi(r)

+ kB T
2∑

i=1

∫
dr ρi (r)〈log[4π f̂i (r, ω)]〉i

+
kB T

2

∫
dr1 dω1

∫
dr2 dω2 exp [−φhs

11(r12)/kB T ]

× {1 − exp [−φ
p
11(r12, ω1, ω2)/kB T ]}ρ1(r1, ω1)ρ1(r2, ω2)

+
∫

dr1 dω1

∫
dr2 dω2 ρ1(r1, ω1)φ

p
12(r12, ω1, ω2)ρ2(r2, ω2)

+ 1
2

∫
dr1 dω1

∫
dr2 dω2 ρ2(r1, ω1)φ

p
22(r12, ω1, ω2)ρ2(r2, ω2), (13)

where ρi (r, ω) and µi are, respectively, the density-orientational profile and the chemical
potential of species i , and 〈A〉i = ∫

dω A f̂i(r, ω), with f̂i (r, ω) the orientational distribution
function of species i . In equation (13) the superscript p denotes the non-hard parts of potentials
φi j(r12, ω1, ω2) (i, j = 1, 2), the hard parts of which are hs (hard sphere) and hd (hard dimer).
A local density approximation for the reference part of the potentials is implicit, and is usually
valid at the weakly structured LV interface. We take for fhs+hd the Honnell–Hall free energy
density (FED) [56]:

fhs+hd

kB T
= ρ1

[
log(�3

1ρ1) − 1 +
η(4 − 3η)

(1 − η)2

]

+ ρ2

[
log(�3

2ρ2) − 1 + b3 log(1 − η) +
η(b1 − b2η)

(1 − η)2

]
, (14)

where �i is the de Broglie thermal wavelength of species i , η = π(ρ1 + 2ρ2)σ
3/6 is the total

packing fraction, and b1 = 8.211 99, b2 = 6.3091, b3 = 2.755 03. Equation (14) reduces to
the Carnahan–Starling [57] and Tildesley–Streett [58] FEDs in the limits of pure monomers
and pure dimers, respectively.

The equilibrium density-orientation profiles would now follow by standard functional
minimization of the grand potential functional [15, 55], which would furnish a quantitative
test of the qualitative arguments adduced above. Given the smallness of the competing effects
(and recall that the degree of alignment is a few per cent at most), it is a non-trivial matter to
judge the reliability of the various approximations involved. This work is in progress.
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